3.351 \(\int \frac{x^2}{(3+2 x^2) (1+2 x^2+2 x^4)^{3/2}} \, dx\)

Optimal. Leaf size=423 \[ -\frac{\left (\sqrt [4]{2}+2^{3/4}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right ),\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{4 \left (3 \sqrt{2}-2\right ) \sqrt{2 x^4+2 x^2+1}}-\frac{\sqrt{2} \sqrt{2 x^4+2 x^2+1} x}{5 \left (\sqrt{2} x^2+1\right )}+\frac{\left (4 x^2+3\right ) x}{10 \sqrt{2 x^4+2 x^2+1}}-\frac{1}{10} \sqrt{\frac{3}{5}} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )+\frac{\sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{5 \sqrt{2 x^4+2 x^2+1}}-\frac{\left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{10\ 2^{3/4} \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}} \]

[Out]

(x*(3 + 4*x^2))/(10*Sqrt[1 + 2*x^2 + 2*x^4]) - (Sqrt[2]*x*Sqrt[1 + 2*x^2 + 2*x^4])/(5*(1 + Sqrt[2]*x^2)) - (Sq
rt[3/5]*ArcTan[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/10 + (2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4
)/(1 + Sqrt[2]*x^2)^2]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(5*Sqrt[1 + 2*x^2 + 2*x^4]) - ((2^(1/4
) + 2^(3/4))*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2
 - Sqrt[2])/4])/(4*(-2 + 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4]) - ((3 + Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^
2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(10*2^
(3/4)*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.241675, antiderivative size = 503, normalized size of antiderivative = 1.19, number of steps used = 8, number of rules used = 7, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.241, Rules used = {1315, 1178, 1197, 1103, 1195, 1216, 1706} \[ -\frac{\sqrt{2} \sqrt{2 x^4+2 x^2+1} x}{5 \left (\sqrt{2} x^2+1\right )}+\frac{\left (4 x^2+3\right ) x}{10 \sqrt{2 x^4+2 x^2+1}}-\frac{1}{10} \sqrt{\frac{3}{5}} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )-\frac{\left (1+2 \sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{20 \sqrt [4]{2} \sqrt{2 x^4+2 x^2+1}}-\frac{3 \left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{70 \sqrt [4]{2} \sqrt{2 x^4+2 x^2+1}}+\frac{\sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{5 \sqrt{2 x^4+2 x^2+1}}+\frac{\left (3+\sqrt{2}\right )^2 \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{140 \sqrt [4]{2} \sqrt{2 x^4+2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((3 + 2*x^2)*(1 + 2*x^2 + 2*x^4)^(3/2)),x]

[Out]

(x*(3 + 4*x^2))/(10*Sqrt[1 + 2*x^2 + 2*x^4]) - (Sqrt[2]*x*Sqrt[1 + 2*x^2 + 2*x^4])/(5*(1 + Sqrt[2]*x^2)) - (Sq
rt[3/5]*ArcTan[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/10 + (2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4
)/(1 + Sqrt[2]*x^2)^2]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(5*Sqrt[1 + 2*x^2 + 2*x^4]) - (3*(3 +
Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - S
qrt[2])/4])/(70*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) - ((1 + 2*Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)
/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(20*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) +
((3 + Sqrt[2])^2*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/
24, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(140*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4])

Rule 1315

Int[(((f_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Dist[
f^2/(c*d^2 - b*d*e + a*e^2), Int[(f*x)^(m - 2)*(a*e + c*d*x^2)*(a + b*x^2 + c*x^4)^p, x], x] - Dist[(d*e*f^2)/
(c*d^2 - b*d*e + a*e^2), Int[((f*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p + 1))/(d + e*x^2), x], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 0]

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1216

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Di
st[(c*d + a*e*q)/(c*d^2 - a*e^2), Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[(a*e*(e + d*q))/(c*d^2 - a*e^2)
, Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a
*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]

Rule 1706

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, -Simp[((B*d - A*e)*ArcTan[(Rt[-b + (c*d)/e + (a*e)/d, 2]*x)/Sqrt[a + b*x^2 + c*x^4]])/(2*d*e
*Rt[-b + (c*d)/e + (a*e)/d, 2]), x] + Simp[((B*d + A*e)*(A + B*x^2)*Sqrt[(A^2*(a + b*x^2 + c*x^4))/(a*(A + B*x
^2)^2)]*EllipticPi[Cancel[-((B*d - A*e)^2/(4*d*e*A*B))], 2*ArcTan[q*x], 1/2 - (b*A)/(4*a*B)])/(4*d*e*A*q*Sqrt[
a + b*x^2 + c*x^4]), x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^
2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0]

Rubi steps

\begin{align*} \int \frac{x^2}{\left (3+2 x^2\right ) \left (1+2 x^2+2 x^4\right )^{3/2}} \, dx &=\frac{1}{10} \int \frac{2+6 x^2}{\left (1+2 x^2+2 x^4\right )^{3/2}} \, dx-\frac{3}{5} \int \frac{1}{\left (3+2 x^2\right ) \sqrt{1+2 x^2+2 x^4}} \, dx\\ &=\frac{x \left (3+4 x^2\right )}{10 \sqrt{1+2 x^2+2 x^4}}+\frac{1}{40} \int \frac{-4-16 x^2}{\sqrt{1+2 x^2+2 x^4}} \, dx-\frac{1}{35} \left (3 \left (3+\sqrt{2}\right )\right ) \int \frac{1}{\sqrt{1+2 x^2+2 x^4}} \, dx+\frac{1}{35} \left (3 \left (2+3 \sqrt{2}\right )\right ) \int \frac{1+\sqrt{2} x^2}{\left (3+2 x^2\right ) \sqrt{1+2 x^2+2 x^4}} \, dx\\ &=\frac{x \left (3+4 x^2\right )}{10 \sqrt{1+2 x^2+2 x^4}}-\frac{1}{10} \sqrt{\frac{3}{5}} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{1+2 x^2+2 x^4}}\right )-\frac{3 \left (3+\sqrt{2}\right ) \left (1+\sqrt{2} x^2\right ) \sqrt{\frac{1+2 x^2+2 x^4}{\left (1+\sqrt{2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{70 \sqrt [4]{2} \sqrt{1+2 x^2+2 x^4}}+\frac{\left (3+\sqrt{2}\right )^2 \left (1+\sqrt{2} x^2\right ) \sqrt{\frac{1+2 x^2+2 x^4}{\left (1+\sqrt{2} x^2\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{140 \sqrt [4]{2} \sqrt{1+2 x^2+2 x^4}}+\frac{1}{5} \sqrt{2} \int \frac{1-\sqrt{2} x^2}{\sqrt{1+2 x^2+2 x^4}} \, dx+\frac{1}{10} \left (-1-2 \sqrt{2}\right ) \int \frac{1}{\sqrt{1+2 x^2+2 x^4}} \, dx\\ &=\frac{x \left (3+4 x^2\right )}{10 \sqrt{1+2 x^2+2 x^4}}-\frac{\sqrt{2} x \sqrt{1+2 x^2+2 x^4}}{5 \left (1+\sqrt{2} x^2\right )}-\frac{1}{10} \sqrt{\frac{3}{5}} \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{1+2 x^2+2 x^4}}\right )+\frac{\sqrt [4]{2} \left (1+\sqrt{2} x^2\right ) \sqrt{\frac{1+2 x^2+2 x^4}{\left (1+\sqrt{2} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{5 \sqrt{1+2 x^2+2 x^4}}-\frac{3 \left (3+\sqrt{2}\right ) \left (1+\sqrt{2} x^2\right ) \sqrt{\frac{1+2 x^2+2 x^4}{\left (1+\sqrt{2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{70 \sqrt [4]{2} \sqrt{1+2 x^2+2 x^4}}-\frac{\left (1+2 \sqrt{2}\right ) \left (1+\sqrt{2} x^2\right ) \sqrt{\frac{1+2 x^2+2 x^4}{\left (1+\sqrt{2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{20 \sqrt [4]{2} \sqrt{1+2 x^2+2 x^4}}+\frac{\left (3+\sqrt{2}\right )^2 \left (1+\sqrt{2} x^2\right ) \sqrt{\frac{1+2 x^2+2 x^4}{\left (1+\sqrt{2} x^2\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{140 \sqrt [4]{2} \sqrt{1+2 x^2+2 x^4}}\\ \end{align*}

Mathematica [C]  time = 0.198397, size = 199, normalized size = 0.47 \[ \frac{-(1+3 i) \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{1-i} x\right ),i\right )+8 x^3+4 i \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} E\left (\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )-2 (1-i)^{3/2} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} \Pi \left (\frac{1}{3}+\frac{i}{3};\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )+6 x}{20 \sqrt{2 x^4+2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((3 + 2*x^2)*(1 + 2*x^2 + 2*x^4)^(3/2)),x]

[Out]

(6*x + 8*x^3 + (4*I)*Sqrt[1 - I]*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticE[I*ArcSinh[Sqrt[1 - I]*x
], I] - (1 + 3*I)*Sqrt[1 - I]*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticF[I*ArcSinh[Sqrt[1 - I]*x],
I] - 2*(1 - I)^(3/2)*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticPi[1/3 + I/3, I*ArcSinh[Sqrt[1 - I]*x
], I])/(20*Sqrt[1 + 2*x^2 + 2*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.01, size = 536, normalized size = 1.3 \begin{align*} -{\frac{{x}^{3}}{2}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{{\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{2\,\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{ \left ({\frac{1}{4}}-{\frac{i}{4}} \right ) \left ({\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) -{\it EllipticE} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) \right ) }{\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+6\,{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}} \left ({\frac{3\,{x}^{3}}{20}}+x/20 \right ) }-{\frac{3\,{\it EllipticF} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{20\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{{\frac{9\,i}{20}}{\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{9\,{\it EllipticE} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{20\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{{\frac{9\,i}{20}}{\it EllipticE} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) }{\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}-{\frac{1}{5\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\it EllipticPi} \left ( x\sqrt{-1+i},{\frac{1}{3}}+{\frac{i}{3}},{\frac{\sqrt{-1-i}}{\sqrt{-1+i}}} \right ){\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(2*x^2+3)/(2*x^4+2*x^2+1)^(3/2),x)

[Out]

-1/2*x^3/(2*x^4+2*x^2+1)^(1/2)+1/2/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*
EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+(-1/4+1/4*I)/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2
)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*(EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-EllipticE(x*(-1+I)^(1/2),1/
2*2^(1/2)+1/2*I*2^(1/2)))+6*(3/20*x^3+1/20*x)/(2*x^4+2*x^2+1)^(1/2)-3/20/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*
x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-9/20*I/(-1+I)^(1/2)
*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(
1/2))-9/20/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2
),1/2*2^(1/2)+1/2*I*2^(1/2))+9/20*I/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2
)*EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-1/5/(-1+I)^(1/2)*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2
)/(2*x^4+2*x^2+1)^(1/2)*EllipticPi(x*(-1+I)^(1/2),1/3+1/3*I,(-1-I)^(1/2)/(-1+I)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{{\left (2 \, x^{4} + 2 \, x^{2} + 1\right )}^{\frac{3}{2}}{\left (2 \, x^{2} + 3\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(2*x^2+3)/(2*x^4+2*x^2+1)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^2/((2*x^4 + 2*x^2 + 1)^(3/2)*(2*x^2 + 3)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1} x^{2}}{8 \, x^{10} + 28 \, x^{8} + 40 \, x^{6} + 32 \, x^{4} + 14 \, x^{2} + 3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(2*x^2+3)/(2*x^4+2*x^2+1)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(8*x^10 + 28*x^8 + 40*x^6 + 32*x^4 + 14*x^2 + 3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (2 x^{2} + 3\right ) \left (2 x^{4} + 2 x^{2} + 1\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(2*x**2+3)/(2*x**4+2*x**2+1)**(3/2),x)

[Out]

Integral(x**2/((2*x**2 + 3)*(2*x**4 + 2*x**2 + 1)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{{\left (2 \, x^{4} + 2 \, x^{2} + 1\right )}^{\frac{3}{2}}{\left (2 \, x^{2} + 3\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(2*x^2+3)/(2*x^4+2*x^2+1)^(3/2),x, algorithm="giac")

[Out]

integrate(x^2/((2*x^4 + 2*x^2 + 1)^(3/2)*(2*x^2 + 3)), x)